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Abstract transport protocol  in high speed  wired  networks for mul- 
timedia  services, its  extension  to  the wireless environment 

Future wireless ATM networks  Proposed  for  Providing  has received an increasing amount of recent attention [2]. 
OC-3 and above data  rates generally employ demand as- Architectures of wireless AT31 networks  capable of sup- 
signed multiple-access protocols over time division mul- porting  up  to oc-3 (155 $1bps) data transmission rates 
tiplexed  channels. Collision resolution  algorithm  based have been  proposed  in  recent  research  publications tar- 
random access protocols (RAP)  are useful for implement-  geted at  creating  end-to-end  ATbI  services. 

In the wireless networking  environment,  it is important  to in order to arrive at a wireless AT&I network is the de- 
ing the connection request  procedure for these protocols'  Among the technological issues that have to be resolved 

determine the performance Of these protocols in the pres- velopment of suitable multiple-access (MAC) protocols in 
ence Of propagation  errors. This paper considers the  data link layer. proposals  for the wireless ATbI net- 
the Performance of a sing1e Q-arraY free-access works have  generally  been either  spread  spectrum phys- 
collision resolution  algorithm  based RAP in the presence ical layer (PHY) where the natural MAC protocol is 

stable  throughput or capacity is derived for an infinite multiplexed PHY with demand-assigned MAC protocol 
population Poisson user population  model. The average [3]. Even through  spread  spectrum techniques employing 
delay-throughput  characteristic is also  derived.  Simula- CDNIA have been shown to be appropriate for digital eel- 
tions were performed to  validate the analytical  resultes. lular networks, including  the third generation INIT-2000 
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Random access protocols (RAP)  are useful for imple- 
menting the connection  request  procedure in demand- 
assigned multiple access systems. The Q-ary single- 

Of memory1ess feedback errors* The maximum code-division multiple-access (CDMA); or a time-division 

1 INTRODUCTION 
- 

channel  algorithms  can be used in the multiple channel 
time division multidexed  environment. Each user with 



access CRA  based RAPs [5], [6] achieved a maximum 
stable  channel throughput of .4294. Ternary feedback 
protocols [7] , [9] provide even higher maximum  stable 
throughput  with  the highest achievable throughput  to 
date of .48775 [lo]. Ternary feedback blocked-access CRA 
based RAPs however have the undesirable  drawback of 
catastrophic  deadlock failures in the presence of channel 
feedback errors.  In  spite of their lower maximum sta- 
ble throughputs,  there  has also been substantial  interest 
in single-channel free-access CRA  based RAPs [8], [ll], 
[12], [13] because of their  implementation  advantage over 
window blocked-access algorithms.  Mathys  and  Flajolet 
[13] has  obtained the best single-channel free-access CRA 
based RAPs  to  date with stable  throughputs of .4016 and 
.4076 in the binary  and  ternary feedback situations. 

Wang and  Thanawastien [14] have designed a Q- 
channel window blocked-access algorithm which resolve 
collisions on the channel by channel  basis. That is if a col- 
lision occurs  in  one of the channels, than all Q-channels 
are used to resolve the collision. However, this  approach 
is inefficient for large  Q (Le., Q 2 4).  This is intuitively 
evident from the fact that, for large Q, many  empty  chan- 
nel slots are  created  and did not utilized. The multiple- 
channel free-access (MCFA)  algorithm [4] exploit  those 
empty  channel  slots by transmitting new arrivals. 

In the wireless network  environment, the effect of prop- 
agation  channel  errors  on the performance of the multiple- 
access protocol is important.  Both memoryless channel 
model and  the  Gilbert channel model have received enor- 
mous  amount of attention  in  the  literature for the  stud- 
ies of block-access or  splitting  algorithms in the presence 
of chahnel  errors. The system  capacity of single chan- 
nel block access algorithms  in the presence of memoryless 
channel  errors were considered in [9] and [17]-[19]. The 
system  capacity of single channel block access algorithms 
in the presence of Gilbert  channel  errors were considered 
in [20]. However, there  appears  to be  no previous work 
on the performance of the free-access algorithm in the 
presence of channel  errors.  Performance  analysis fo the 
Q-ary single channel free-access collision resolution algo- 
rithm  in  the presence of feedback channel  errors will pro- 
vide valuable insight into  the performance of demand  as- 
signed multiple access protocols  operating in the wireless 
environment. 

In  this  paper, we derive the performance of Q-ary sin- 
gle channel free-access collision resolution  algorithm.  In 
Section 2, we give a brief description of the Q-ary sin- 
gle channel free-access algorithm.  Throughput  and delay 
analysis are given in Sections 3 and 4, respectively. Con- 
clusions and discussions are presented  in  Section 5. 

2 THE  BASIC Q-ARY SCFA 
In this  section, we provide some brief background of 
the binary feedback Q-ary single-channel free-access colli- 
sion resolution  algorithm. The  Q-ary single-channel free- 

access algorithm is summarized  as follows: The new pack- 
ets  are  transmitted immediately at the beginning of the 
next  slot following their  arrival (regardless of whether 
there is any collision resolution  in progress or not). Af- 
ter a collision, each user, involved in the conflict, chooses 
one of Q-groups for transmission  with  equal  probability. 
This  splits the set of contending  packets  into  Q  subsets 
or groups.  Those who select group  number  one  transmit 
first and follow by group  number  two  and  etc.  The second 
group is transmitted only when all  packets are resolved 
in  the first  group. 

Implementation of the above  protocol at each transmit- 
ter  (user) is based  on the counter scheme. Each  trans- 
mitter is assumed at any given time  to have at most one 
packet either  ready of in the process of transmission. The 
packet transmission  time is indicated by a counter kept 
by each transmitter.  Packet  transmission  are  initiated 
only when the value of the counter is zero. The value of 
the counter is either  incremented  or  decremented  based 
on the  status of the feedback information. 

3 CAPACITY IN THE  PRES- 
ENCE OF FEEDBACK ER- 
RORS 

In  this section, we examine the maximum achievable sta- 
ble throughput of the binary feedback Q-ary free-access 
collision resolution  algorithm in the presence of feedback 
errors  under the assumption of an infinite user popula- 
tion. That is the new packet  arrival  point process which 
is assumed to  be Poisson  with rate X packets  per  slot. 
We assume a memoryless feedback channel  error model 
such that collision state feedback has  no  error  and  the no 
collision state feedback has  an  error  with probability E .  

Feedback information errors cause idle and single packet 
channel  slots to be  interpreted  as collision slots. Extra 
time  slots are required to  resolve these  erroneous colli- 
sion slots.  Errors are assumed to  be independent from 
slot to slot and  independent of the packet  arrival process. 

The  throughput  analysis, presented  here, is based on 
some of the techniques  first developed by [9] for anal- 
ysis the effect of channel  errors for the binary obvious 
blocked-access algorithm  along  with the generating func- 
tion  techniques previously applied by [13] for analyzing 
single channel free-access algorithm  (without feedback er- 
rors).  The collision resolution  interval (CRI) is defined as 
the time  period  from the  start of the slot where the ini- 
tial collision occurs up  to  and including the slot when the 
initial collision has  been resolved. The CRIs play a fun- 
damental role in  this analysis. Since CRIs  can  be  nested, 
a CRI which is part of a larger CRI is called a  sub-CRI; 
and a CRI which is not a sub  CRI of any  other  CRI is 
called a CRI from scratch. 

For a generic CRI from scratch, let U denote the num- 
ber of packets transmitting in the present  slot and let 
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Y(U)  denote the length of the  CRI measured in slots in 
the error-free  environment. Moreover, define the follow- 
ing: Yb is the number of blank  slots in the  CRI; Y, is the 
number of slots  with a single packet in the CRI;  and Y, 
is the number of the slots  with collision in the  CRI.  In 
the error-free  case, it is observed that  the single channel 
Q-ary  algorithm is essentially a Q-ary  tree scheme where 
the number of intermediate  nodes of the Q-ary  tree is Y, 
and  the number of terminal nodes is Y, + Yb. By starting 
with a full grown tree  and  pruning  branch by branch  and 
using mathematical  induction, the following relationship 
can  be easily established  in  error-free case 

& ( U )  + Ys(U) = (Q - 1)Y,(U) + 1.  (1) 

Note that for binary collision resolution  algorithm 

Yb(U) + Ys(U) = Yc(U) + 1 

which was first derived by [9]. Furthermore, 

Y(U) = Yc(U) + Ys(U) + & ( U ) .  (2) 

For the error-free  environment, define the conditional ex- 
pected values 

LN = E{Y(U)IU=N, in error free environment} 
SN = E{Y,(U)IU=N,  in  error free environment} 
BN = E{Yb(U)Iu=N, in error free environment} 
CN = E{Y,(U)IU=N, in error free environment} 

Given that U = N ,  the expected  number of new packet 
arriving  and successfully transmit in the  CRI is equal to 
X(LN - 1). Hence, 

SN = N + X(LN - 1). (3) 

Using (3) it follows from taking conditional  expectations 
(1) and  (2)  that 

L N = N + X ( L N - ~ ) + B N + C N ,  (4) 

BN + N + X(LN - 1) = (Q - 1)cN + 1, (5) 

which obtains 

BN = L N ( ~  - l / Q  - X) + l / Q  + X - N.  (6) 

In the environment  with feedback channel  errors, define 
the conditional  CRI  length as 

L N , ~  = E{Y ( U )  IU = N, in  channel  error environment}. 

Define Tb to  be  the number of time  slots  required for the 
successful resolution of a  blank  channel  slot when feed- 
back channel error  are  present. T, denotes the number of 
time  slots  required for the successful resolution of a sin- 
gle packet channel  slot when feedback channel  error are 
present.  Then 

( 7) 

with  probability (1-6) 
Tb = { + QY(X) with  probability E (8) 

1 with  probability (1-e) 
T, = { 1 + (Q - l)Y(X) + Y(X + 1) (9) 

where X is a Poisson random  variable  with  mean X rep- 
resenting the new arrival  packets transmitting  in  the first 
slot of the sub-CRI’s that resolves the blank  channel  slot 
or the single packet  channel  slot. It follows from equa- 
tions (8) and (9) that 

with  probability E 

E{Tb} = (1 - E )  +€( I  f 
O0 X” 

X !  
Q --e-’E{Y(U)IU = x ,  error}) 

x=o 

O3 X“ 
X !  

= 1 + EQ -e-’L,,,. 
x=o 

Similarly, 

Similar to  Messey [9], we conclude that 

LN,e zz LN + BNE{Tb - 1) + SNE{T, - 1). (12) 

where E{Tb - 1) is the expected  number of extra  slots, 
induced by feedback error, when a blank was transmitted 
and E{Ts - 1) is the expected  number of extra  slots, in- 
duced by feedback error, when a single packet was trans- 
mitted.  When N = 0, using (12),  (3), (6), ( lo),  and (11) 
can show 

Lo,, = 1 + E{Tb - 1). (13) 

Similarly, when N = 1, 

Ll,, = 1 + E{Ts - 1). (14) 

Define the generating  function 

L $ ( z )  = e-‘L,(z) (15) 

Then  it follows from (lo), (ll), (13), (14),  and (15) that 
it  can  be established that 

L,’(O) = Lo,, = 1 + EQL,’(X) 

and 
L p  (0) = EL,*(l) (X).  

By taking the generating  function of (12), 
immediately  obtained in terms of L*(z )  in 
case. That is 

(16) 

(17) 
L,*(z) can  be 
the error-free 

L,*(z) = L * ( z ) { l +  (Q - l)eL,*(X) + kL,*(l)(X)} 
+€L,*(X) + ( Z  - X)EL,*(l)(X). (18) 

Taking the derivative of (18) and  setting z = X, L$‘l)(X) 
can  be solved. Substituting L,*(l)(X) back into (18) and 



setting z = X, an expression for L,'(X) can  be  obtained 
in  terms of L*(X) and L*(l)(X)  in the error-free environ- 
ment. However, this  intuitive  approach does  not  provide 
us sufficient amount  informations  regarding the behavior 
of L,'(z) which are required when we compute the delay- 
throughput  characteristics. We need to derive a func- 
tional  equation of L:(z) which solely governed by L$(X) 
and L;(')(X). 

Let Ye(U)  denote the length of CRI, measured in slots 
when feedback errors  are  presented.  The U  packets  initi- 
ating  the  CRI independently select among the Q groups 
for transmission.  Let Uj denote the number of packets se- 
lecting j-th  group for transmission where j 5 Q. Clearly, x,"=, Uj = U .  A collision occurs  in the  j-th group if and 
only if the number of packets in the  j-th  group is greater 
than two. So the collision (if any)  in  the first  group is first 
resolved, followed  by the collision (if any) in the second 
group,  and so on.  Resolution of the collision (if any)  in  the 
j-th  group  starts a sub-CRI.  These  sub-CRIs evolve dis- 
jointly in time.  Let X j  denote the newly arrived packets 
during the first  slot of the  sub-CRI. Since the sub-CRIs 
are disjoint in time, X I ,   X 2 ,  . . . , X Q  are i.i.d. Poisson ran- 
dom  variables  with  mean X that also are independent of 
U1, U2, . . . , UQ. Since the evolution of each of these  sub- 
CRIs is similar to  the evolution of a CRI from scratch, 
the length of the sub-CRI resolving the set of Uj pack- 
ets is denoted by Y,(Uj + X j ) .  Note that  the conditional 
distribution of Y,(U) is identical to  the conditional dis- 
tribution of Ye(Uj + X j ) ,  given that U = Uj + X j  = N .  
Hence, 

Q 

j=1 

It can  be shown that for N 2 2 

Taking the generating  function of L N ,  e, 

Substituting (13), (14),  and (20) into (21), 

L,(z )  = E{Tb - 1) + zE{T, - 1)  + e z  

N=2 i=O 
1 N- i  

(22) 

Hence, 

+&eZ-' N! e (7) 03 zN 

N=2 i=O 

After some simplification, 

La(.) = 1 + e-"E{Tb - 1)  + ze-"E{T, - 1) 
QL,*(X + z / Q )  - Q(1+ z)e-"L,*(X) 
- ze-"~ ,*( ' )  ( 4  (24) 

Using (lo), (ll), and (24) can  be  written as 

L;(z )  - QL,*(X + 2)  = 1 + QL$(X) f ( z )  + L$(l)(X)g(z)  Q 
(25) 

where 

f ( z )  = -(1 - ~ ) ( 1  + z)e-" 

g(z)  = - (1-  E)ze-" (26) 

with  initial  conditions 

Lz(0) = l+QcL:(X) 
L,*(1) (0)  = € L y  (X).  (27) 

The form of the functional  equation of LE(z) in  the pres- 
ence of feedback error is similar to  the error-free case. As 
E approaches  zero, the function  equation of LE ( z )  becomes 
the functional  equation  in  error-free  case  with the initial 
conditions LE(0) = 1 and La'"(0) = 0 as in [13]. The 
solution of (25)  can be  obtained by using the iterative 
approach,  suggested by Mathys  and  Flajolet [13]. Define 
for any  function h(z) 

where 

A m = {  

and 

Taking the second derivative of (25), 

Using the iterative  solution  and  integrating the above 
function, 



Setting z = X 

Finally,  integrating (32) once more, using (33) and  setting 
z = x  

L,*(X) = 1 

1 - Q ( E  + R ( f ;  4 + 
(l-.e)-.R(l)(g;A) 

(34) 
where R(l)(f;X), R(l)(g;X), R(f;X), and R(g;X) are 
given in the Appendix I. The maximum  stable  through- 
put, X,,,, of the Q-ary single channel free-access algo- 
rithm in presence of feedback channel  error is the argu- 
ment which maximizes (34). 

4 DELAY ANALYSIS IN  THE 
PRESENCE OF FEEDBACK 
ERRORS 

The delay of a packet will be  measured from the begin- 
ning of its first  transmission to  the beginning of the slot 
in which it is successfully transmitted.  This may be re- 
ferred to  as the packet session delay, and is equal to  an 
integer  number of slots.  The  total delay incurred by a 
packet is the session delay plus  one  slot for the packet 
transmission  time and plus the time difference between 
the packet arrival  time and  the beginning of the next  slot 
following that arrival  time. Hence the  total average delay 
is equal to  the average session delay plus 1.5 slots in the 
zero propagation delay situation. 

Similar to  the approach  taken in [15] and [16], the 
average packet session delay will be  determined using 
the following  law of large  numbers  (LLN)  consideration. 
Specifically, the average session delay is obtained by tak- 
ing the sum of the random session delays of all packets 
which are successfully transmitted over a sequence of M 
CRI’s  from scratch, divided by the random  number of 
such  packets, in the limit as M -+ 00. The LLN applies, 
since the sequence of M CRI’s from scratch evolve in a 
statistically  independent  manner  due to  the Poisson new 
packet arrival process. Note from the LLN that  the num- 
ber of packets successfully transmitted  in  the sequence of 
M CRI’s  is, in the limit as M tends  to 00, almost  surely 
equal to X . M . L*(X). 

For the  CRI from scratch  with U packets transmitting 
in the first  slot,  let W e ( U )  denote the random delay of a 
packet, x, whose first  time  transmission  results  a collision 
with  multiplicity U and  the channel  has  error  probability 
E .  If the collision has  occurred, each of the U packets 
in the first slot of the  CRI from  scratch  independently 
chooses one of the Q groups to  transmit with  equal  prob- 
ability 1/Q, We refer this process as the slitting  stage. 
Let Uj denote the number of packets selecting group j for 
transmission and let X j  denote the newly arrived  packets 

Figure 1: A Q-ary tree  diagram. U is the number of the 
packets that initiated collision and  the channel  has  error 
probability E .  The x is one of the U packets. 

transmitted  during  the first  slot of the sub-CRI (if any) 
resolving the set of Uj packets, for 1 5 j 5 Q. After the 
splitting  stage, let the packet x be one of uk packets as 
illustrated  in  Figure 1. The delay of the packet, x, is one 
plus the sum of the CRI’s of U1 + X I ,  . . . , Uk-1 +Xk-1 and 
plus the  amount of time required to  transmit  the  packet, 
x, with  initial collision of multiplicity Uk + xk. For in- 
stance, if the packet x in  Figure 1 is one of the packets 
in U3, then  the  random delay of the packet x whose first 
time  transmission  results  in conflict with  multiplicity U 
and  the channel  has error  probability e is 

We(U)  = 1 + Ye(U1 + X I )  + ye(U2 + X , )  + We(U3 + X , )  
(35) 

where Ye (U1 + X , )  and Ye (U, + X2) are  the  length of the 
CRI’s of U1 + X1 and U2 + X2, respectively. Moreover, 
noting that  the conditional  distribution of W e ( U )  is iden- 
tical to  that of W , ( U j + X j ) ,  given that U = U j + X j  = N .  
Since each of the U packets in the first slot of the CRI 
from scratch  independently chooses one of the Q groups 
for transmission  with  equal  probability l /Q,  the following 
recursion in U valid for U 2 2 

We (u 

Define 

1 + we(u1 + X I )  
with  probability s, 
with  probability 3, 
with  probability % 
for 1 5 IC 5 Q. 

1 + Ye(U1+  X2) + we(u2 + X , )  

1 f ~~~~ x(uj + xj) + we(uk + X k )  

(36) 
he conditional  moment  generating  function 

A N , ~ ( s )  = C P r o b { l V ~ , ,  = k}sk = E[sWe(’)IU = N ]  
k=O 

(37) 
and  the conditional  expected value 

DN,e = E[We(U)IU = N ]  = Ag!,(1) (38) 



Figure 2: The single  packet, x, selects  one of Q groups 
for transmission  with  probability 1/Q  and  the channel 
has  error  probability E .  

of We ( U )  given U = N .  First,  the following recursion 
valid for N 2 2 can  be  obtained  using (36) and (37) 

probability 1 - E .  If the collision which induced by the 
feedback  error  has  occurred, then x independently  selects 
one of the  Q  groups for transmission  with  equal  proba- 
bility 1/Q. Suppose that x has selected the k-th  group  as 
shown in Figure 2. Then  the delay of x is one  plus the 
sum of the  length of the CRI's of the first  group to  the 
(k-1)-th  group  plus the  amount of time required to trans- 
mit x given the  initial collision of multiplicity 1 + X k .  

Note that  the lengths of the CRI's of group  one to group 
(k-1) are  equal to E{Y,(Xj)}  = L,(X) for 1 5 j 5 (IC - 1) 
where X j  denotes the newly arrived  packets.  Therefore, 
it can  be  established that 

Dl, ,  = E 1 + &-IL,*(X) + D,*(h)}  (44) 
{ 2  

Taking the  generating function of (40) with the initial 
conditions,  described  above,  yields the following func- 
tional  equation  after  some  diligent works 

D:(z) - D:(X + z/Q) + (1 - E)e-'D:(X) 
= [I - (1 - ~)e- ']  

+ (v) {L,*(X + z/Q) 
Q . k - 1  

E { ~ K ( ~ I + x I ) }  + 21. I'I E{sY=(ij+Xj)} 
- (1 - E)e-'L,*(X)) (45) 

k=2  j=1 Let O,(U, IC) denote the  total number of packets that ex- 
E { S W e ( i k f X k )  

I >  
(39) perience a delay  k during a CRI  from  scratch  with  ini- 

tial collision of multiplicity U and with  channel  error E .  

e#, IC) is in fact  equal to U times  the probability that 
a packet  experiences a delay k. By carefully  examine the 
splitting  stage in Figure 1, we conclude that 

Taking the derivative of (39) and  setting s = 1, DN,, is 
obtained  after  some  algebra for N 2 2 as 

(1 - l/Q)N-l-i e -x D ? ) ( X )  j=1 

Q - 1 N"l 
+- ( ) (1/QIi 

N T 1  where Au,uj,xj (IC) is the  random increment or decrement 
in the number of packets that experience  delay  k which  is 2 

i = O  induced by one  splitting  stage  with given U, U j ,  and X j  
[(I - l/Q)N-I-i e -xL(i) e (X) .  (40) for 15 j 5 Q.  Hence, given U = N 

Define next the  generating functions D e ( z )  and D,"(z)  of A ~ = ~ , ~ j = u j , ~ j = z j  (IC) = N 
the sequence {DN,,}  by Q 

00 Pr{W,(U) = IClU = N} - C U ~  
Z N  

De(z)  = DN+l,e- (41) j=1 

N=O 
N! P.{W,(Uj + X j )  I Uj = u j , x j  = Zj}(47) 

D,*(z)  = e-"D,(z). (42) Note that  the principle  here is identical to  the one in 
Do,e is delay of a blank slot Over the noisy channel.  Since  error-free  case. However, the  probability  distribution of 

there is no  information  being transmitted, we arbitrarily 
set Do,, to be zero as in the error-free  case. However, 
Dl,, = E{We( l )} .  Hence, 

We ( U )  is different.  Let 

VN,e(k) = E[ee(u,k)lV = N ]  (48) 

Dl, ,  = (1 - E )  . O  + cE{W,(l)lchannel  error} (43) Defining the  generating  function of VN,,(IC) as 

00 

We(l) is the  random  delay of a  single  packet, x, and  it 
B N , e ( S )  C V N , e ( k ) s ' .  (49) is nonzero since the single  packet, x, is transmitted with k=O 



. .  
And we denote the conditional  expected total  time  that 
packets spend  in the system  during a CRI from scratch 
with  initial collision of multiplicity N and with channel 
error E as J N , ~ ,  then 

M 

k=O 

Using (46),  (47),  (48),  and  (49), 

x=o 

Taking the derivative of B N , ~ ( s )  and  setting s = 1, we 
obtain for N 2 2 

(1 - l / ~ ) N - l - i  -Xgi 
e (52) 

Note that in error-free  environment, Jo and J1 are zeros. 
However, this is not  true when the system is operating 
in the presence of the feedback errors. is in fact 
the  total  amount of time that new arrivals  spend in the 
system when the feedback error  occurs. Since there  are 
Q groups, 

Jo,e = € Q J , * ( X ) .  (53) 
To obtain JI , , ,  let  us carefully examine  Figure 2. When 
the "virtual conflict" which induced by the feedback error 
has  occurred, the packet x randomly selects one of Q 
groups to  transmit. Hence, there  are (Q-1)  groups which 
each group  contains only new arrival X .  There is a group 
which contains l + X  packets,  namely the packet x plus 
the new arrivals. The  total  time  that 1+X packets  spend 
in the system is e-'J,(l)(X). Moreover, the packet x has 
spend  an  additional  time  slot  in the system. Hence, 

J1,, = ~ [ l  + ( Q  - l )J ,*(X)  + J,")(X)e-'] 
= ~ [ l  + QJ,*(X) + J,*(')(X)]. (54) 

Define the generating  functions J e ( z )  and J,*(z) of the 
sequence { J N , ~ }  by 

03 N 

(55) 

J,*(z) = e- 'Je(z ) .  (56) 

Using (44),  (45),  (52),  (53),  (54),  and (56) and  after some 
algebra, we can show that 

J,*(z) - QJ,* (X  + z / Q )  = Qf(z )J ,* (X)  + 
g(z)[J ,*( l ) (X)  + 11 + z + p ( z )  (57) 

where 

p(z )  = z ( y )  [Lz(X + z / Q )  - e-"LH(X)] (58) 

and f ( z )  and g ( z )  are defined in  (26). The  initial condi- 
tions for (57) are 

J,*(O) J o , ~  = EQJ,*(X) (59) 

and 
Je*(l)(0) = Jl , ,  - J o , ~  = E + EJ,*(')(X) (60) 

It can  be shown that (57) satisfies the above  initial con- 
ditions. The solution of J,*(X) can  be  obtained by using 
the iterative  approach. It can  be shown that 

Hence, the average delay is given by 

where all  parameters  are specified in the Appendix I. 

5 DISCUSSION  AND  CONCLU- 
SION 

The maximum stable  throughput, X,,,, of the Q-ary 
SCFA algorithm in the presence of the memoryless feed- 
back channel  error has been  determined  in  this  paper. 
Numerical results for X,,, for various feedback error  rate, 
E ,  are given in  Figure 3 for Q=2 to  Q=7. In the error-free 
environment,  our  results are consistent  with the results in 
[13]. Figure 3 indicates that X,,, decreases  as the error 
rate E increases.  In fact, when E = 1 / Q ,  the maximum 
achievable throughput is zero. To examine  this  situa- 
tion, we define "virtual conflict" as  the conflict induced 
by error, E ,  when a single packet is transmitted.  When a 
('virtual conflict" occurs, the single packet selects one of 
Q-groups for retransmission. It requires  Q  transmissions 
, consisting  (Q-1)  blanks and  the single packet.  When 
E = l / Q ,  another  error would occur  with  probability  one. 
So the system is always trying  to resolve errors. No  in- 
formation  can be  transmitted.  Figure 3 also illustrates 



that  the incremental  reduction of capacity as E increases. 7.2 Expression for R(l)(g, X) 
For example,  When Q=3, the maximum achievable stable 
throughputs for the following values of E 0, 0.05, 0.1, 0.15, (1 - E) - R(')(g; X) = (1 - ~ ) ( 1  - p)e-p. (64) 
and 0.2 are 0.401599, 0.378885, 0.352864, 0.322268, and 
0.284831 packets  per  slot, respectively. As E increases 
from 0 to  0.05, from 0.05 to 0.1, from 0.1 to 0.15, and 
from 0.15 to 0.2, the maximum  stable throughput de- 
creases by the  amount of 0.0227, 0.0260, 0.0306, and 
0.0374, respectively. When Q=4, the maximum achiev- 
able stable  throughputs for E equals 0, 0.05, 0.1, and 0.15 
are 0.399223, 0.366924, 0.328166, and 0.278949 packets 
per  slot, respectively. As E increases from 0 to 0.05, from 
0.05 to 0.1, and from 0.1 to 0.15 the maximum  stable 
throughput decreases by the amount of 0.0323, 0.0388, 
and 0.0492, respectively. Therefore, the Q-ary SCFA al- 
gorithm is more sensitive to  errors  as the number of par- 
titions, Q, is large. 

The  delay-throughput  characteristics of the Q-ary 
SCFA algorithm  in the presence of errors have been de- 
rived analytically. To examine the validity of the analyt- 
ical delay analysis which was presented  in the previous 
section, the simulated delay throughput characteristics 
in  the presence of feedback channel  errors for the Q-ary 
SCFA  were obtained by assuming Poisson infinite-user 
population model. These  simulations were carried out in 
a time  duration of one million time  slots. The results 
are shown in Figure  4.  Figures  5 and 6 shows the delay- 
throughput  characteristics of the Q-ary SCFA algorithm 
for various values of E and for Q=3 and 4.  When Q=3 and 
X = 0.25, the incremental  increases  in  average delay are 
0.8328, 1.4098, 2.9048, and 10.5945 as E increases from 
0 to 0.05, from 0.05 to 0.1, from 0.1 to  0.15, and from 
0.15 to  0.2, respectively. When Q=4 and X = 0.25, the 
incremental increases in  average delay are 1.2277, 2.8143, 
and 14.5467 as E increases from 0 to  0.05, from 0.05 to 
0.1, and from 0.1 to 0.15, respectively. Those figures il- 
lustrates  that  the average delay increases dramatically  as 
E increases for fixed Q.  The  best over all delay and the 
capacity  in the presence of feedback errors  are  obtained 
when Q is equal to  three. 

7.3 Expression for R(l) ( p ,  X) 
Taking the derivative of p ( z )  

+ ~ C ~ L , * ( X ) ]  (65) 

By noting X + p / Q  = p and p ( l )  (0) = 0, it follows from 
(28) that 

Using (25) and  (33), L,*(p)  can  be expressed as 

where f(z)  and g ( z )  are given in  (26). Using (18) and (33), 
L,* ( l ) (p )  can  be expressed as 

L,* ( l ) (p )  = L*( l ) (p )  { 1 + (Q - ~)EL,*(X) + XEL,*(~)(X)} 

+EL,*(l) (X) (68) 
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(70) 

7 APPENDIX I 

7.1 Expression for f ,  X) 
It follows from (28) that 

~ ( l ) ( f ;  X) = (1 - E)pe-U 

Substitute (26) into (70) yields the following infinite series 
expression for R(g; X): 



The  straight forward  calculation of R(g; X) results an nu- the infinite series, interchanging the order of summation, 
merical  unstable  summation. By expending the exponen- simplifying the resulting  equation, and  let  the  first sum- 
tial  terms in equation  (71)  into the infinite series and in- mation  equals to A, A  can  be  written  as 
terchanging the order of summation,  and simplifying the 
resulting  equation, R(g; X) can  be  written  as A = pe-pL;(X) ( Q ;  - '> { [ X(l - P )  - P ~ - ~  

1 - Q-1 

7.5 Expression for R( f ,  X) The sequences {L,*(X,)} and {L,*(l)(X,)} in the second 

To obtain  an expression for R( f ;  X),  note that 
summation of (77) can  be  generated recursively as follows. 
Recall that X + X, = Xm+l. It  then follows  by setting 
z = X, in  (25) for m 2 0, f ( z )  = g ( z )  - (1 - €)e-'. (73) 

Hence, 

R ( f ;  X) = R(g; X) - (1 - c)R(e-'; X). (74) 
~ - m ) ]  e-pep~-"679) 

R( f ;  X) can  be  written  as 
with  initial  condition Lz (X,) = L,*(O). Similarly, first 

q f ;  X) = R ( ~ ;  X) - (1 - c ) P 2 e - p  + (1 - € l e - p  5 < differentiate  (25)  with  respect to z and  then set z = X, in 
i=2 2 .  the resulting  equation. This yields the following recursion 

1 - Q-i X valid for m 2 0: 
1 - Q-(i-1) - -} 1 - Q-% . (75) L;(')(Xm+l) = L,*(l)(X,)+-L~(X)Q-(m-l)e-~e~Q-m P 

l - U  

7.6 Expression for R(p, A) (80) 
with  initial  condition L;(l) (X,) = L$')(O). The direct 

Similar to (70) ,  computation of the summation  number two in  (77) also 
results  in  numerical  instability  since the convergent rate 
of the first term in the summation  number two is faster 
than  the convergent rate of the second term. For large m, 

00 

R(P; X) = Q"-'[p(X,) - p(Xm-1) 
m=l 

-XQ-(,-')p(')(Xm-1)]. (76) L y )  = L,* (Xm+l) - L; (Am)  

Substitute (58) into (76) yields the following infinite series 
expression for R(p; X): - - L,* (X"+1) - L$ (Am)  

Xm+l - X, 

XQ-" (81) 

Q - 1) 

The straight  forward  calculation of R(p; X) results an nu- where M is larger.  And 
merical unstable  summation. By expending the exponen- 
tial  terms in summation  number  one of equation (77) into R(p; X) = A + B. 
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Figure 4: Comparison of simulated  and  analytical  results 
for Q=3 in the presence of the feedback  error E = 0.05. 

Figure 5: The  throughput-delay  characteristic for Q=3 in 
the presence of the feedback  error  e. 

Figure 6: The  throughput-delay  characteristic for Q=4 in 
the presence of the feedback  error  e. 


